« Climb On — "For climbers, cyclists, runners, rogues, and rock stars!" | Home | Most and least likely places to be struck by lightning »

June 1, 2018

BehindTheMedspeak: First 3D-Printed Human Corneas

World changing.

From Science Daily:

••••••••••••••••••••••••••••••••••

180529223312_1_900x600

[Photo caption: Dr. Steve Swioklo and Professor Che Connon with a dyed cornea.]

The first human corneas have been 3D-printed by scientists at Newcastle University, UK

It means the technique could be used in the future to ensure an unlimited supply of corneas.

As the outermost layer of the human eye, the cornea has an important role in focusing vision.

Yet there is a significant shortage of corneas available to transplant, with 10 million people worldwide requiring surgery to prevent corneal blindness as a result of diseases such as trachoma, an infectious eye disorder.

In addition, almost 5 million people suffer total blindness due to corneal scarring caused by burns, lacerations, abrasion, or disease.

The proof-of-concept research, published today in Experimental Eye Research, reports how stem cells (human corneal stromal cells) from a healthy donor cornea were mixed together with alginate and collagen to create a solution that could be printed, a "bio-ink."

Using a simple low-cost 3D bio-printer, the bio-ink was successfully extruded in concentric circles to form the shape of a human cornea. It took less than 10 minutes to print.

The stem cells were then shown to culture — or grow.

Che Connon, Professor of Tissue Engineering at Newcastle University, who led the work, said: "Many teams across the world have been chasing the ideal bio-ink to make this process feasible.

"Our unique gel — a combination of alginate and collagen — keeps the stem cells alive whilst producing a material which is stiff enough to hold its shape but soft enough to be squeezed out the nozzle of a 3D printer.

"This builds upon our previous work in which we kept cells alive for weeks at room temperature within a similar hydrogel. Now we have a ready to use bio-ink containing stem cells allowing users to start printing tissues without having to worry about growing the cells separately."

The scientists, including first author and PhD student Ms. Abigail Isaacson from the Institute of Genetic Medicine, Newcastle University, also demonstrated that they could build a cornea to match a patient's unique specifications.

The dimensions of the printed tissue were originally taken from an actual cornea. By scanning a patient's eye, they could use the data to rapidly print a cornea which matched the size and shape.

Professor Connon added: "Our 3D-printed corneas will now have to undergo further testing and it will be several years before we could be in the position where we are using them for transplants.

"However, what we have shown is that it is feasible to print corneas using coordinates taken from a patient eye and that this approach has potential to combat the world-wide shortage."

••••••••••••••••••••••••••••••••••

Screen Shot 2018-05-31 at 6.44.21 AM

Above, the researchers with their 3D printer.

Below, the abstract of their paper published May 14, 2018 in Experimental Eye Research.

••••••••••••••••••••••••••••••••••

3D Bioprinting of a Corneal Stroma Equivalent

Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.

June 1, 2018 at 10:01 AM | Permalink


Comments

Joe, not a slam about your post which I think is a great find, but it's interesting that a paper whose first author is a woman is illustrated by a picture of 2 men, and that they are noted as "the researchers" with the printer. One of them is the chief researcher, the other is obviously a colleague in his lab, but what happened to PhD student Abigail Isaccson?

Posted by: Barbara Roseman | Jun 6, 2018 11:43:02 AM

Post a comment