« December 22, 2019 | Main | December 24, 2019 »

December 23, 2019

Bar-headed goose flies alongside its human foster parent

Bar-headed geese are "the astronauts of the bird world," migrating above 26,000 feet, according to a New York Times article.

Below,

Dr. Jessica Meir, the bike rider in the video up top, works on a wind-tunnel experiment with a bar-headed goose, shown in super slow-motion.

Dr. Meir and her group published their findings on the physiology of bar-headed geese high-altitude flight in a paper that appeared this past September.

December 23, 2019 at 04:01 PM | Permalink | Comments (0)

World's smallest "gingerbread" house

Screen Shot 2019-12-22 at 9.12.07 PM

From Popular Mechanics:

A new microscopic gingerbread house is actually made of silicon, but it's still thought to be the smallest such structure ever made.

McMaster University research associate Travis Casagrande carved the tiny house using a focused ion beam shooting gallium ions at the silicon surface.

Casagrande belongs to the Canadian Center for Electron Microscopy (CCEM), where the Brockhouse Institute for Materials Research has assembled a collection that scientists from all over can use for their research.

The Center has 10 electron microscopes (both transmission and scanning), Auger electron spectroscopy, atom probe tomography, and the ion beam Casagrande used to carve his tiny house.

The gingerbread house is both a curiosity and a showcase — its roof is labeled with “ "CCEM" and "McMaster University," and its welcome mat is a Canadian flag — for the kind of work the CCEM is enabling.

The house is positioned on the flattened top of a snowman made of other micromaterials, and the height of the entire assemblage is about the diameter of a human hair.

Instead of building the house by adding materials, Casagrande cut silicon away, more like sculpting from a block of marble or using a 3D router.

The level of detail is mind boggling, and Casagrande used the ion beam to carve letters and building textures into just the surface of the silicon.

This must be the world's tiniest bas-relief.

Charged ion beams are part of the overall field of spectroscopy, which includes electron microscope technology, chemical spectral analysis, and MRI machines.

The same extremely tiny detail in Casagrande's carved gingerbread house is how the focused electron beams in an electron microscope illuminate the tiniest details so we can see them.

Traditional ways to carve, using tools, just aren't possible on the micro scale.

By the time you've manufactured microscopic tools, you might as well have used the same methods to directly carve the item — it all goes back to beams rather than physical implements.

In this way, a potentially programmable ion beam offers similar appeal to a 3D printer: It removes not just human error but the need for more intermediary technology.

One complete and programmable micro-level tool takes the place of a whole box of regular-size tools.

December 23, 2019 at 02:01 PM | Permalink | Comments (0)

Helpful Hints from joeeze: How to deal with the oil that accumulates on top of natural peanut butter

Screen-Shot-2016-11-25-at-1.06.41-PM

Before now, I'd do what everyone does, namely, stir the stuff up until the oil slick disappeared into the peanut butter.

Then this, from Men's Journal:

Natural [peanut] butter separates, with oil pooling on top.

A simple fix: store the jar upside down.

Genius.

December 23, 2019 at 12:01 PM | Permalink | Comments (1)

Discard Studies

Screen Shot 2019-12-21 at 8.37.36 AM

Res ipsa loquitur.

December 23, 2019 at 10:01 AM | Permalink | Comments (0)

Red Leather Tabi — Martin Margiela

Unger-ss-office05-tt-width-723-height-1083-crop-1-format-three_columns-except_gif-1-scale_up-1

Apply within.

December 23, 2019 at 08:01 AM | Permalink | Comments (0)

« December 22, 2019 | Main | December 24, 2019 »